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Abstract - The Inductive Monitoring System (IMS) sojiware was developed to provide a technique to 
automatically produce health monitoring knowledge bases for systems that are either dificult to model 
(simulate) with a computer or which require computer models that are too complex to use for real time 
monitoring. IMS uses nominal data sets collected either directlyfrom the system orji-om simulations to 
build a knowledge base that can be used to detect anomalous behavior in the system. Machine learning and 
data mining techniques are used to characterize typical system behavior by extracting general classes of 
nominal data from archived data sets. IMS is able to monitor the system by comparing real time 
operational data with these classes. We present a description of learning and monitoring method used by 
IMS and summarize some recent iMS results. 
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1.0 Introduction 

Model based reasoning is a powerful method for performing system monitoring and diagnosis. 
Typical model based reasoning techniques compare a system model or simulation with system 
sensor data to detect deviations between values predicted by the model and those produced by the 
actual system. [ 11 In effect, a model based reasoner uses the collected system parameter values as 
input to a simulation and determines if a particular set of input values is consistent with the 
simulation model. When the values are not consistent with the model a "conflict" occurs, 
indicating that the system operation is off nominal (when compared to the presumably correct 
model). [2] Building models for model based reasoning is often a difficult and time consuming 
process. The Inductive Monitoring System (IMS) provides a method that can monitor the health 
of a system with nearly the same fidelity as a model based reasoner, but without the need to 
manually build a model. IMS automatically defines groups of consistent system parameter data 
by examining and gmeralizi&omexamples of nominal systemdab.G€hsyitmme&-were- 
available, a set of data values selected from one of these groups and presented to the model would 
typically compute without conflicts. With a sufficiently broad training data set, the knowledge 
base produced by IMS should contain most or all of the consistent parameter value combinations 
necessary to effectively characterize and monitor nominal system operation. M e r  learning how 



the system behaves when operating correctly, IMS can identify off nominal behavior and send 
appropriate alert messages to system operators. 

Pressure Valve 1 Pressure Valve 2 Pressure Temperature Temperature 
A Position B Position C 1 2 

2857.2 86.4% 1218.4 96.2% 1104.1 49.8 37.6 

2.0 Learning Nominal System Behavior 

High 

Low 

IMS automatically builds monitoring knowledge bases from nominal data sets collected either 
directly from the system or from simulations. Machine learning and data mining techniques are 
used to characterize typical system behavior by extracting general classes of nominal data from 
archived data sets. In particular, IMS uses clustering to group sets of consistent parameter values 
found in the training data. Clustering is the unsupervised assignment of elements of a given set to 
groups or clusters of similar points. [3] The implementation of IMS described here draws from 
two clustering techniques: K-means clustering [4] and density-based clustering [5 ] .  

Pressure Valve 1 Pressure Valve 2 Pressure Temperature Temperature 
A Position B Position C 1 2 

2857.6 86.8% 1219.2 96.3% 1105.0 50.1 38.2 

2855.8 86.2% 1215.7 95.5% 1103.2 49.6 37.5 

2.1 Data Vectors 

The basic data structure of the IMS algorithm is a vector of system parameter values. (Fig. 1) 
Each vector is an ordered list of parameters collected from the monitored system by a data 
acquisition process. The vectors can also contain derived parameters computed from collected 
data. These vectors define the points in N-dimensional space that are grouped by the IMS 
clustering algorithm. The values used in a given vector may be collected simultaneously by the 
data acquisition system, or collected over a period of time. The user specifies the size and 
contents of the vector structure to match the monitoring application. 

Figure 1 - Sample IMS vector 

Figure 2 - Sample IMS cluster structure 

2.2 Building Clusters from Nominal Data 

IMS processes the training data by formatting input data into the predefined vector format and 
building a knowledge base containing clusters of related value ranges for the vector parameters. 
(Fig. 2) Each cluster defines a range of allowable values for each parameter in a given input 
vector. The vector of high values and the vector of low values in a cluster can be thought of as 
comers defining a minimum bounding rectangle in N-space. Points that fall inside or very near 
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this rectangle are considered to be within the system’s nominal operating range, since the 
rectangles are defined by nominal data. The high and low ranges for each element in the cluster 
can also be considered as allowable ranges for the corresponding parameter, provided the other 
parameters are within the other ranges specified in that cluster. This view is similar to model- 
based reasoning with interval arithmetic where simulations are performed using a range of 
possible values for each parameter, rather than a single value. [6] 

IMS starts the training process with an empty cluster database. It reads the nominal training data 
and formats it into vectors. The first vector is inserted in the database as the initial cluster. Each 
subsequent input vector is compared to the contents of the cluster database to find the cluster that is 
closest to the vector. The distance between a vector and a cluster can be measured using a variety 
of metrics. The standard Euclidean distance metric has proven effective for many applications. To 
calculate the distance between a given cluster and a vector, a point contained in the cluster is 
selected and the distance between that point and the vector of interest is computed with the distance 
formula. Different methods for selecting the point in the cluster can be used depending on desired 
results. One option, based on the K-means clustering method [4], measures the distance from the 
centroid of the cluster found by forming a vector from the average of the high and low values for 
each cluster parameter. For each new training input vector, IMS finds the cluster in the database 
that is closest to that input vector. IMS then determines if the input vector is contained in the 
bounding rectangle defined by that cluster, or if it is close enough to be incorporated into the 
cluster. As in density-based clustering [5 ] ,  a threshold value, E, specified by the user defines the 
maximum allowable distance between a cluster and vector to determine if the vector should be 
incorporated into the cluster. If the vector is close enough (distance less than or equal to E), the 
cluster parameter intervals are expanded as necessary to include the new vector. If the distance 
between the training vector and the closest cluster in the database is greater than E, a new cluster 
containing the vector is formed and inserted in the database. This learning process repeats until all 
of the training data has been processed and incorporated into clusters in the knowledge base. A 
smaller E value will result in smaller clusters that provide tighter monitoring tolerance, but will 
spmetines produce a larger than desired monitoring knowledge base. A smaller knowledge base 
allows real-time monitoring at a higher data rate. The value of E can be adjusted to balance 
knowledge base size and speed versus monitoring tolerance. 

It can be usehl to scale or normalize the data values before they are inserted in the vectors. For 
instance, each parameter can be scaled to represent a percentage of the maximum range for that 
parameter and the user can select a metric such that the distances between vectors and clusters are 
a percentage of the maximum distance found in the training data. This can give the user a more 
intuitive understanding of the monitoring knowledge base and the significance of any off-nominal 
system behavior encountered during system monitoring. Data values can also be relatively scaled 
to provide weighting of given parameters. For instance, scaling a parameter to have a larger 
possible range relative to other parameters in the vector will amplify any deviations in that 
parameter. Other combinations of data normalization and distance metrics may be useful for 
various situations. 

After IMS processes all training data, the result is a database of clusters that characterize system 
performancein the operating regfmmvered by the training-data; In essence, eachdmter - - - 

defines constraints on the values allowed for each parameter in any particular monitoring input 
vector. If there is no cluster in the database that contains a given input vector or is “near” that 
input vector, then the system is behaving in an unexpected manner, indicating a possible system 
anomaly. 
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3.0 System Health Monitoring 

To use the cluster knowledge base for system health monitoring, IMS simply formats the real time 
data into vectors and queries the knowledge base to locate the cluster that is closest to each input 
vector. The fastest IMS monitoring schemes require that the input data vectors be contained inside 
at least one of the knowledge base clusters (all parameter values are within the ranges specified by 
the cluster limits). This eliminates the need to perform distance calculations. A more informative 
monitoring technique will locate the cluster in the monitoring knowledge base that is closest to the 
input vector, and report the distance of that vector from the cluster. This will give the operator an 
idea of how far the system behavior is deviating from nominal operation as represented by the 
training data. Typically, if a vector is not contained within a cluster, the distance between the 
vector and the closest point in the bounding rectangle defined by the nearest cluster is reported. 
The monitoring program can account for incomplete training data or measurement inaccuracies by 
setting a tolerance on the maximum allowable distance of the input vector from the nearest cluster 
for the vector to be considered nominal data; i.e., the input data must be “close enough” to previous 
nominal data to be considered nominal. The monitoring program could also use multiple tolerance 
values to determine the level of alert to send to the operators. An input vector further than a given 
distance from the nearest cluster may indicate a significant problem requiring immediate attention, 
while a vector somewhat closer than that limit may be suspect enough to warrant extra vigilance, 
but not require immediate action. To gauge general system health or to track general system 
behavior over time, the monitoring interface could graph or summarize the distance the input 
vectors collected during the time of interest have fallen from the nominal clusters. 

In order to use the IMS generated cluster database for real time or near real time system monitoring, 
an efficient cluster indexing and retrieval scheme may be required. Several applicable schemes 
have been developed in the area of nearest neighbor searching. [7] In order to allow searching the 
database for the closest cluster, the scheme must include a distance metric and the ability to return 
the record that is nearest to the query point, not just those that contain the query point. The search 
and retrieval speed must also be sufficiently fast to keep up with the expected data acquisition rate. 
An efficient indexing and retrieval scheme can also help to speed up the initial IMS training process 
since it makes similar closest cluster queries. IMS applications to date have successfully monitored 
1 KHz data rates without distance calculations and 50 Hz data rates with distance calculations on 
computers running with clock speeds under 1 GHz. 

4.0 IMS Application Example 

The IMS methodology is domain independent and can be used in a variety of system monitoring 
situations including aerospace, transportation, manufacturing, power generation and transmission, 
medical, or process monitoring applications. Of particular interest to NASA is the application to 
Integrated Vehicle Health Management (IVHh4), either on board a vehicle or in a mission control 
room. To demonstrate the utility of LMS in a mission control setting, we recently built an IMS 
knowledge base to monitor temperature sensors in the wings of a Space Shuttle Orbiter, and used 

- - ~ that ~ o ~ l e d g m e t r y  data_collected from theill-fatedSTSs-1_07 . 

Columbia Space Shuttle mission. This flight came to a disastrous end when the Columbia orbiter 
was destroyed during reentry, claiming the lives of all seven crew members. The ultimate cause of 
the accident was determined to be a breach in the Thermal Protection System on the leading edge of 
the left wing, caused by a piece of insulating foam that struck the wing approximately 82 seconds 
after launch. The first indication of the damage that was noticed by mission controllers monitoring 
telemetry data was not seen until Orbiter re-entry, 17 days after launch. That anomaly was a slight 
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increase in a brake line temperature of the left main landing gear that occurred about seven minutes 
before the destruction of the vehicle. [8] 

4.1 IMS STS-107 Analysis 

The post mission IMS analysis of the STS-107 Columbia flight concentrated on telemetered data 
from temperature sensors in the wings of the orbiter. Analyses of telemetry data from two flight 
phases, launchlascent and on-orbit, were conducted. In both analyses IMS detected anomalies 
much earlier in the data than monitoring systems available in mission control. This example will 
focus on the STS-107 launch and ascent analysis. 

IMS knowledge bases for the launch and ascent analysis were generated from training data 
collected during five previous Columbia flights. Separate knowledge bases were generated for 
each wing. Training vectors were formed from four corresponding temperature sensors in each 
wing of the Orbiter. (Fig. 3) Since ambient temperatures differed on each flight, the data vectors 
were normalized to the most centrally located sensor (Main Gear Brake Line Temperature D) by 
expressing the other sensor values relative to the value of that sensor in each telemetry time slice. 
The resulting vectors contained three parameters each. In the results shown here, monitoring was 
M e r  focused by comparing sets of data in a moving four second window (typically 12 to 16 
data points). These data windows were normalized by shifting the points to move the centroid of 
the window to the origin. The points retained their relative positions within each window. The 
data sets used for training and analysis covered the time period from launch through ascent to just 
before Main Engine cut off. The resulting left wing knowledge base contained 490 clusters and 
the right wing knowledge base contained 237 clusters. 

Figure 3 - Left Wing Sensors used in Columbia Ascent Analysis 

4.2 IMS STS-107 Analysis Results 

The results of the IMS analysis of the STS-107 Columbia launch are graphed in figure 4. The 
horizontal axis represents time, beginning at the moment of lift off. The vertical axis represents 
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the IMS measure of deviation from nominal behavior, that is, the distance of the input vector 
from the closest nominal cluster. The distance measure has been scaled to represent a percentage 
of the maximum distance in the vector space covered by the training data. Results from the left 
wing are represented by the lighter line, while right wing results are shown as a darker line for 
comparison. The vertical line near time 15:40:22 shows the moment of the foam impact event 
that breached the Thermal Protection System on the left wing. Notice that the IMS results for the 
left and right wings track each other fairly well until shortly after the foam impact, at which point 
they begin to diverge sharply. The IMS deviation values for the right wing continue to show 
results within a reasonable range of nominal, while the left wing deviation values increase to 
nearly 5 times those of the right wing. Although this analysis was performed off-line using 
archived data, the techniques used could be implemented for real time monitoring. Significant 
deviations in a group of sensors or asymmetrical results for identical sensor sets, especially of 
large magnitude such as shown in this analysis, may provide indication of anomalies earlier in a 
mission than current telemetry monitoring tools. 

STS-107 Launch IMS Analysis 
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Figure 4 - Results of IMS analysis of STS-107 Columbia launch 

5.0 Conclusions and Future Work 

These early results from the Inductive Monitoring System show that it is feasible to automatically 
construct a useful system monitoring knowledge base from archived system data using clustering 

that obtained by model based reasoning techniques, without requiring the cost and effort of 
building system models. In addition, the IMS monitoring routine may be used for real time or 
near real time system monitoring. As a mission control tool, IMS could help augment controller 
awareness of vehicle health and provide early detection of possible anomalies. As shown by the 
STS-107 analysis, IMS revealed evidence of the Thermal Protection System anomaly within 
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minutes of the foam strike while current mission control tools did not detect the problem until 
Orbiter re-entry, 17 days later. 

IMS applications currently under development include a turbine aircraft engine monitoring 
system, and monitors for various subsystems of the Stratospheric Observatory for Mared  
Astronomy (SOFIA), an airborne observatory co-developed by NASA and the German space 
agency DLR. Techniques to assist in parameter selection for IMS vectors, analyze IMS result 
trends, and integrate IMS monitoring with diagnostic routines are also being studied. 
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